THE STRUCTURE OF PYRIZINOSTATIN

Masahiro Hatsu[†], Hiroshi Naganawa[†], Takaaki Aoyagi[†],^{††} and Tomio Takeuchi[†]

[†]Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan ^{††}Department of Hygienic Chemistry, Showa College of Pharmaceutical Sciences, 3-chome, Higashitamagawagakuen, Machida-shi, Tokyo 194, Japan

YOSHIO KODAMA

Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., Morooka-cho, Kohoku-ku, Yokohama 222, Japan

(Received for publication August 11, 1992)

In a previous communication¹⁾, we have described the isolation, physico-chemical properties and biological properties of pyrizinostatin (Fig. 1), a new inhibitor of pyroglutamyl peptidase (PGpeptidase). In this paper, the structure determination of pyrizinostatin is reported.

Pyrizinostatin was obtained as colorless crystals, and its molecular formula was established as $C_{11}H_{15}N_5O_4$ by HRFAB-MS and elemental analysis. The IR spectrum exhibited strong absorption at 1680 cm⁻¹ suggesting the presence of amide bond in the molecule (Fig. 2). The UV spectra showed a maximum at 280 nm (ε 4,600) in MeOH.

The ¹³C and ¹H NMR data for pyrizinostatin are summarized in Table 1. In the ¹³C NMR spectrum,

Fig. 2. IR spectrum of pyrizinostatin (KBr).

The structure of pyrizinostratin was determined by crystal X-ray diffraction analysis. A colorless

- F J	5		
Position	¹³ C	М	$^{1}\mathrm{H}$ (J = Hz)
N2-CH ₃	37.0	q	3.31
3	151.5	s	_
N4-H			5.75
4a	54.9	s	_
5	166.2	S	_
N6-CH ₃	28.8	q	3.27
7	149.8	s	
N8-CH ₃	30.4	q	3.34
8a	138.6	S	_
9	49.6	t	2.95 (16.0),
			3.24 (16.0)
10	202.7	S	_ `
11	30.8	q	2.13

Table 1. ¹³C (100 MHz) and ¹H (400 MHz) NMR data of pyrizinostatin in CDCl₃.

Fig. 4. Molecular structure of pyrizinostatin.

tained. The structure was solved by SHELXS⁴). The non-hydrogen atoms were refined anisotropically. The final cycle of full-matrix least-squares refinement was based on 473 observed reflections (I>3.000(1)) and 181 variable parameters and converged (largest parameter shift was 2.42 times its end) with R=10.2%. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.43 and $-0.38 e^-/Å^3$, respectively. All calculations were performed using the TEXSAN crystallographic software package of Molecular Structure Corporation. A PLUTO⁵ drawing of the molecule is shown in Fig. 4.

Therefore, the structure of pyrizinostatin was determined to be 2,4,4a,8-tetrahydro-2,6,8-trimethyl-4a-(2-oxopropyl)-pyrimido[5,4-*e*]-1,2,4-triazine-3,5,7(6*H*)-trione.

References

- AOYAGI, T.; M. HATSU, C. IMADA, H. NAGANAWA, Y. OKAMI & T. TAKEUCHI: Pyrizinostatin: A new inhibitor of pyroglutamyl peptidase. J. Antibiotics 45: 1795~1798, 1992
- GREIG, C. G. & D. H. LEABACK: Use of chlorine in the detection of compounds on paper chromatograpms. Nature 188: 310~311, 1960
- BAX, A. & M. F. SUMMERS: ¹H and ¹³C assignments from sensitivity enhanced detection of heternuclear multiple-bond connectivity by 2D multiple equantum NMR. J. Am. Chem. Soc. 108: 2093 ~ 2094, 1986
- SHELDRICK, G. M.: SHELXS In Crystallographic Computing 3. Ed., G. M. SHELDRICK, et al., pp 175~189, 1985
- MOTHERWELL, W. S. & W. CLEGG: PLUTO. Program for Plotting Molecular and Crystal structure. Univ. of Cambridge, England, 1978

Chemical shifts in ppm from TMS. M: Multiplicity.

Fig. 3. HMBC data summary for pyrizinostatin.

prism crystal of C11H15N5O4 having approximate dimensions of $0.2 \times 0.2 \times 0.1$ mm was mounted on a glass fiber. All measurements were made on a Rigaku AFC5R diffractometer with graphite monochromated CuK_{α} radiation and a 13 KW rotating anode generator. Cell constants were a = 20.352(3), b =9.156(2), c = 15.322(3)Å, V = 2720.6(9)Å³, b =107.66(1), Z=8 and the calculated density is 1.373 g/cm³. Based on the systematic absences, the space group was determined to be C2/c (#15). The data were collected at room temperature using the $\omega - 2\theta$ scan technique to a maximum 2θ value of 120.3°. Omega scan of several intense reflections, made prior to data collection, had an average width at half-height of 0.19° with a take-off angle of 6.0° . Scans of $(1.25+0.30 \tan \theta)$ were made at a speed of 16.0°/minute. The equivalents were merged (R_{int}=0.049), finally 1,838 reflections were ob-